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FOR WARD

The enclosed material consists of lecture notes prepared for A Short Course

on Inertial Oudsance presented by Engineering Extension and Physical Sciences

Extension, University of California, Los Angeles, October 10-21, 1960. The

theory of inertial instrumnts, platforms, and error analysis are presented

in other parts of the course. This material is concerned mainly vith the proper

utilisation of inertially derived position and velocity data in a way which will

fulfill the missiot objectives.
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ROCM VxICL• GLIACE SCH!NS

1.0 I•ThtJCTION

The guidance scheme or philosophy for a rocket or ballistic vehicle differs from

that of a cruise vehicle in two principal respects. The first Is a result of the

fact that a rocket vehicle thrusts at high levels for relatively small fractions

of its total flight timp hile essentially the opposite is true for a cruise

vehicle. Since significant control forces are available only during powered flight,

the rocket vehicle's guidance system must be able to direct the vehicle.s course

during this time in a way which will precisely influence its position and/or

velocity minute., hours, or even months later.

The second major difference is in the area of dimensions. Rocket guidance system

are thre2 dimensioval, vith vehicles being guided between two points in inertial

space. Cruise vehicle guidance systems, on the other hand, are basically two

dimensional in nature, with the third dimension being fixed or externally supplied.

Vehicles are guided over a known surface like, for examle, the earth.

1.1 Vehicle Characteristics

Rocket vehicles have lengths which range from a few feet in the case of short

range missiles to 100 feet or more in the case of ICBM's and space vehicles.

Weights agsin range from a fey pounds to hundreds of thousands of pounds. They

can have any number of stagesp one to four being the most comon and wy be

either liquid or solid propelled. Thrust accelerations during each stage -sually

vary frca 1.5-3 g's at ignition to 8-10 ga' at burnout. The structu-sp particularly

for the larger vehicles, is extremely light with at least 90 percent of the gross

weight being fuel an& oxidiser. The resulting lack of rigidity often places

rather severe limitations on the vehicle's maneuvering ca•ability.

*The mathor would like to acknowledge the contributions by his may colleagues in
the guidance areas at- Space-Technology Laboratories. Re would in particular like
to single out J. X. Bachar, F. Baskin, J. A. Joseph, T. W. Layton, J. W. McCarthy,
W. J. McLaughlin, R. N. Southworth, and D. W. Vhitcombe of the Inertial Ouidance
Department. R. M. Page of the Guidance and Navi1ation Department, and W. Schroeder
of the Computers and OGldance Department.
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Flight path control is usually obtained by pointing the missile ij the direc-

tion of desired thrust, with changes in attitude being obtained by momentarily

deflecting the direction of thrust. This can be accomplished by gimbalUing

the thrust chamber in the case of a liquid or the nozzle in the case of a

solid. Alternatively, the flame pattern can be deflected by means of jet vanes

or Jetavators placed in the thrust stream. Guidance can be radio, inertial

or a combination of the tw. The discussion in this chapter, while aimed

primarily at Inertial guidance, is frequently general enough to apply equally vell

to other types of systems.

1.2 Trajectory Characteristics

The trajectory for a rocket vehicle can be divided into three types of phases

as shovn in Figure 1: I povered flight, II free flight, and III re-entry.

I'I

h Eat

\ /

(a) ICN4 (b) KUM'T S&TE=LTE

I - Powered Flight

Flight Phases II - Free or Ballistic Flight

III - Re-entry

Figure 1 - SCaE TYPICAL ROCKET TRAJECTORIF•3
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There vill be one or more each of the powered and free flight phases. There

will be a re-entry phase only if the payload is returning to earth or arriv-

ing nt some other planet having an atmosphere.

The initial powered phase is the most complex, because of the exit atmosphere.
The trajectory usually begins with the missile rising vertically for a fey

seconds. During this time it rolls to the proper heading. The vehicle then

executes its pitch mneuver; after a short transient, usually called transi-

tion turn, a gravity or zero lift turn begins and continues until the missile

has effectively left tke atmosphere. The gravity turn, which is accomplished

by causing the missile to thrust always along its velocity vector, minimizes

drag effects and aerodynamic heating. The gravity turn is usually continued

to some staging point, although this is not always the case, particularly when

there is only a single stage. kfter leaving the atmosphere, structural con-

straints can be relaxed and a more arbitrary attitude profile can be pre-

scribed. A very high acceleration vehicle, hovever, can achieve the desired

velocity before it ever leaves the atmosphere. This can cause significant

steering problems.

When thrust has been terminated, the vehicle begins its free flight, where

gravity is the only acting force. The free flight trajectory lies completely

within a plane which contains the center of the earth and.vill be in the shape

of a conic - either an ellipse, a parabola, or a hyperbola, depending on

whether the veloci.ty is belov or above escape velocity, the parabola being the

limiting case. In the case of a ballistic missile, the ellipse intersects the

earth at the target. Actually the earth's oblateness causes the trajectory to

be non-planar and to differ slightly from a true ellipse. Similarly, the in-

fluence of other celestial bodies on earth satellites and space probes keeps

them from being pure conics. The thrust-coast sequence can be repeated essen-

tially any number of times depending only on the mission.
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Any rocket which returns to earth, such as a ballistic missile or a mann.d

space vehicle, must finally undergo a re-entry phase. tere non-nominal re-

entry conditions such as winds or density variations can also contribute to

system inaccuracy, since these effects are usually not predictable during the

boost guidance period. If re-entry guidance is used, then these effects are

eliminated.

1.3 The Guidance Problem

The thrust of a rocket engine is a complex function of the engine (and propellant)

parameters, the air pressure, the temperature, the vehicle acceleration, and to a

lesser extent, a variety of other quantities. For a given set of engine and

vehicle parameters, any desired trajectory can be synthesized by using simulation

techniques on a high speed digital computer, providing, of course, that the per-

formance limitations of the vehicle are not exceeded and provided the relative

positions of vehicle and target are known. On the computer the desired trajectory

is achieved by time programming vehicle attitude and terminating thrust at the

appropriate time or times. How then is the powered flight of an actual vehicle

controlled so that it too accomplishes its desired mission?

A Simple Example- A simple example for purposes of illustration the German

V-2 missile, developed near the end of World War I! This missile had a take-off

weight of 28,600 pounds, a thrust of 59,800 pounds, and a maximum thrust accelera-

tion of 6.4 g's. A typical trajectory is sLown in Figure 2.

1004

75
Miles

50

BO 392 sec Impact

50 100 150 200 250
Miles

Figure 2 - V-2 TRAW3OCT0PY

*See for examplre,'Inertial Guidance for Rocket-Propelled Missiles", by
W. T. Russell, Jet Propulsion, January 1958.
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For this cese, the issaile bha a range of 230 miles and nominally burneA out at

70 seconds, about 15 miles downrange vith a spe.ed (V) of about 6000 fps and a

lurnout angle (T) maesured .:rom the hori zLcntal of a'out 540.

A simple scheme for guiding such a vehicle is agafi to program attitude and

burnout as functions of time as .s done in the simulation. A pitch attitude

programmer is instatlel in the missile and its output compared wih the gimbal

angles of an inertial. platform, the difference being used as the control system

error signal. Yaw and roll cs•a also be progranned, probably to zero. A clock

is used t6 shut off tbe engine at 70 seconds or, alternatively, only enough fuel

is placed in the missile so that the engine burns out at 70 seconds.

The scaeme just outlined perforas very well as long as both the missile and its

environment are nominal. The impact accuracy is limited only by the performance

of the prograimer and the attitude reference. A nominal missile is, however,

orly the average of an ensemble, with any given vehicle differing from thi

nominal to some degre.e. Some of the more sigificant perturbations as far as

the trajectory is concerned a*e given in Table 1.

Table 1

Significant Perturbations

Thrust Variation

Initi ar Migis VariatI on

Mass Flow Rate Variation

Thrust Misalign;ent s

Drag Variations

Wind (gusts and shear)

Thrust and mass variations can be in the neighborhood of a few percent, mis-

alignments around a degree, and winds sometimes in the hundreds of rph. While

it is clear that such perturbations can cause impact errors, it is necessary

to examine the equations of motion if a more quantitative indication of accuracy

is desired.
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An Error Analyois - For a range of 230 miles, the earth can be assumed

flat to a first approximation. If x is downrange and r is up and if

the re-entry atmosphere is ignored, the equations vhich describe the missile's

flight from burnout (DO) to impact are

x - X0I o~ (1)
'o o tff

1 2
z - 0 + o t -f g tff

where xo0 9 o kX 0 and 0 are BO positions and velocities, tff is the
2

time of free flight, and g is gravitational acceleration equal to 32.2 fps

The problem can be further simplified if it is assumed that z - 0 and that

x is small compared to x . Hence

x £ kot f (3)

0 r. 2 (4)
o ff 2 f

From (3) and (4) it follovs that

2i
tff +' (5)

wnd
2 o

x + .. 2 (6)

or irv polar form

i V2 sin2Tx -+ - o (7)

From (6) t.he velocity miss coefficients in Table 2 are easily derived. These

coefficientto relate burnout velocity errors to impact position errors.
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Table 2 - MISS COEFFICIMTS FOR V-2 TRAJErCTORY

Coefficient Ex.ression Nlumerical Value for
V a 6000, r. .- o5 0

2i S.+o..o
+ 0.060 ?i

2:k Ri

The effect of a typical perturbation vili nov be examined. Consider the case

where the thrust is 5% high during the entire 70 seconds of povered flight a3

shown by the upper path in Figure 3. The velocity at burnout is actually the

Time
cutoff- /150 (70 sec) /

/I

VT Cutoff.-'

100. LNominal BO

Thousands (70 seconds)

of feet High
(Vertical) Thrust

50. Nominal
Trajectory

vo - 6=00fps

00
0 5o IO

0 50 100

Thousands of Feet
_ - -(Horizontal)

Figure 3 - V-2 POWED FLIGHT FOP NO#IAL AND HIGH TFRUST

integrated effects of both thrust and gravity so that

ioaiT 3500 (8)

io T 0Oo + go . 480 (9)

vhere the "T" subscript indicates thrust nnd the "1" subscript gravity.
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For a 70 second povowre flight, i is equal to 2254 fps, assuming g to
go

be a constant. Rence

t

o .05(350W) - 175 fps (10) C

o- - .05(4800 + 2254) - 353 fps (11)

Using the idse coefficients from Table 2, 6x can be computed to be

ft .-0(275) + .044(353) = 26.0 miles (12)

Clearly a downrange miss of this size would make the system unacceptable for

most applications.

A More So§giticated System - If the system is to perform adequately in

the face of expected perturbations, then it appears that sa closed loop scheme

mist be mplcyed. The Germans took the first step in this direction by mounting

an interating accelerometer along the V-2's roll axis. Thrust was then terminated
*ken a pre-set value of thrust velocity was reached. Again considet the case of

a missile with thrust 5% high.' Referring to (8) and (9) it is seen that the only

3O velocity pert2'ttion will be due to i 0 which will. be 5$ low in magnitude

since the time to BO is reduced by this amount and, g has been assumed con-

stant. The reduction in time, of course, is due to the fact that the pre-set

value of VTO will be reached earlier due to the high thrust. The downrange

miss is nov computed to be

S- .0o 4 6i (13)
- .o0W (.05)(2254) - 5.0 miles

Comparing (13) and (12) shows that the downrange miss has been reduced by a

factor of five. A further reduction could probably be achieved by cutting off as

a function of both time and thrust velocity. Beyond this, path variations in

gravity and non-standard burnout position would have to be considered. Also
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attention vould have to be paid to the lateral direction where winds and mis-

alignments can cause substantial errors. In Section 2, a more basic approach

to the guidance problem is taken, and the basic elements of a system are dis-

cussed.
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2.0 FlOk_• TS OF GUIDANCE

In the previous section, it was shown that a considerable improvement in system

accuracy can be obtained vith a r.-latively simple guidance system employing a

single body mounted accelerometer. It is ea-ily shown, however, that the future

trajectory of a vehicle does not depend on any single variable, but on all six

components of its present position and velocity (and time also in the case of a

moving target). It is therefore obvious that in general any really precise

guidance system maut measure and utilize (at least implicitly) all seve-. vari-

ables. For purposes of analysis, the system can be divided into three functions

(1) Navigation

(2) Computation

(3) Control

In the paragraphs that follow, each of these functions, as well ts their combined

capability, is examined in detail. Inertial components are assumed to be perfect,

since component error effects can be analyzed separately.

2.1 The Navigation Function

Navigation, as defined here, consists of determining the vehicles position and

velocity in some known frame of reference. Pelated to this is the computational

coordinate system, which can be either inertial or earth fixed. It can be of

the local vertical type, but usually is not. Two of the more common coordinate

systems are

(1) Launch-ee'red Inertial - The system is inertial and is centered at

the launch site at the instant of launch. It typically has x hori-

zontal and in the launch direction, z vertical, and y completing

the right handed set. It may be desirable from a computational stand-

point to rotate x and I somewhat in the x-z plane.

(2) Launch Centered Earth Fixed - This is an earth fixed coordinate system,

having the same original orientation as (1). It is used primarily when

it is desirable, for hardvare reasons, not to remove earth rate torquing

from the gyros at launch. Computationally it has both advantages and

disadvantages to be discussed later.

*It is possible to in effect combine the navigation and computation functions
into a single operation. Such schemes are not covered here.



STL/TN-uu-oowO-GRI6
Page 11

Any a&ctual inertial guidance system has up to three other coordinate systems

of interest. All four have the same center, but may have different orienta-

tions. First there is the platform coordinate system determined by the

leveling and alignment references. Secondly there is the gyro coordinate

system. Finally there is the accelerometer coordinate system. Originally

there vas only a single system, but schemes presently being used to reduce

component errors and jaimplitr computations frequently require all four.

From a computational standpoint, the only ones of interest are the accelero-

meter and computational coordinate systems, since it is necessary that the

airborne computer mechanize the appropriate transformation matrix.

The Navigation Loop - Since accelerometers measure only non-gravitational

forces, the total acceleration is given by

R(t) + ;ý(t) (114)

where R is inertial position, #T is thrust or measured acceleration,

and i is gravitational acceleration. The block diagram for a navigational

or kinematic loop is shown in Figure 4. As can be seen, sensed acceleration

is rotated into the computational coordinate system and is then added to the

R --

Sfo tRf

gravity
cuput ation

Figure 14 n TI ,AVInaTICIe LOOP

*A bar over a variabe as in ,indicates a vector quantity.
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gravitational acceleration which has been computed based on the courited position.

Position, of course, is obtained by doubly integrating the total acceleration.

All but the actual sensing of acceleration is usually accomplished in the computer,

in most cases a digital computer. If, as is frequently the case, the accelerometer

actually generates pulses representing velocity increments, the computer accul.u-

lates the increments continuously and periodically adds the total to the integrated

gravitational acceleration. When accuracy permits an analog computer can be used.

Here the separation between sensors and computer may be rather obscure.

The presence o be gravity computation is one of the basic features of a precise

inertial guidanre system which distinguishes it from the more rudimentary variety

like the one described in Section 1. If all trajectories were close to nominal,

there would actually be no need for a gravity computat.f.on, since the effect of

gravity could be pre-calculated. Non-standard missiles, launch delays with a

non-earth-fixed target, winds, etc., i-ll~hovever,cause non-standard gravitational

accelerations. This is particularly true of long range missiles where both the

magnitude and direction of g can change appreciably during the long powered

flight period.

The Gravity Computation - The basic expression for gravity assuming a

round earth is

am -. f (15)

where A equals the position vector measured from the :enter of the earth, 0

is the universal gravitational constant, and M is the mass of the earth. If

oblateness is considered, as it mist be in most cases , the formula contains addi-

tional terms. From a mechanization etandpoint, there are two objections to equa-

tion (15). First the coordinate system is unnatural for an inertial system;

second, and most important, the expression contains a division and a square root,

both of which are relatively slow processes in airborne digital computers.

The above problem can often be circumvented by observing that in many cases the

gravity expression need be valid over only a few miles in y and a few

hundred miles in x and & . If such is the case, (15) can be 'expanded in

*If not considered, oblateness cen cause a miss in the order of 10 n.mi. for
a 5500 n.mi. ICBM.
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a Taylor series about a point midway along the povered flight trajectory, an

example being

+ am (C + C X C+ : C 3 X I C Z2 + C xz] (16)

Like any other power series, the number of terms required depends on the varia-

tions in A and the accuracy desired. It can be shown that all of the coefft-

cients are functions of the launch latitude, launch azimuth, and expansion point.

It is possible also to include the effect of centripetal acceleration in the ex-

pression when an earth fixed coordinate system is used.

Dynamic Behavior - Some insight into the dynamic behavior of the naviga-

tion loop can be obtained by writing the components of (15) in terms of a

rectangular coordinate system with its origin in the vicinity of the trajectory

and its z axis vertical. Assuming motion in the trajectory plane, only 9x

and g will be considered. These can be written

- GMx 237 (17)
(Xl x• + (Ro + z)21

= - (z + Ro) (18)
[X "l• + ( + z) ]3/2

vhere it is easily shown that GM is equal to goR0 2  • Expanding equation

(14) into component form gives

S2 +g (19)

" O . + g÷ (20)

*See for example, "A Polyncaial Gravity Zrpansion for the Arma Inertial Guidance
System", (Confidential), by D. W. Whitcombe, Space Technology Laboratories Report
GM 41.2-37, 17 December 1956.
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Writing the perturbation equations for (19) and (20) and assuming that gravity

perturbations are due to position perturbations gives

ýg x ýg x
L&Tx + X-- x + (21)

ýg z ýg z

brz + 6Ax+ (22)%

Taking the partial derivatives of (17) and (18) in the vicinity of the origin

and substituting then into (21) and (22) g-.ves the perturLaticon equations for

the navigation loop

+go (2)

RO

0

The solutions to (23) and (24) for constant values of 6T perturbations are

Ax cooi-cos R tJ (25)

Z = 2g/ cos t - 1] (26)
o 0 0

Near the surface of the earth, the sinusoidal oscillation in x has the familiar

Schuler frequency where 2 x oW_7g7 8~4 minutes. The z channel of course,

divergent with time. For the three dimensional case, the behavior of the y

channel is identical to that of the x channel. The point to be br-"aght out is

that the computational loop is "Schuler tuned" even though the platf rm is not
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locally leveled. Since, however, rocket vehicles invariably have powered f"ight

times much shorter than 84 minutes, acceleration errors propagate lntc velocity

and position errors proportional to time and time squared; from a perturbation

standpoint, the gravity loop appears to be open for time intervals small compared

to the Schuler period.

Multiple Guidance Periods - When inertial guidance is to be used for the

launching of high altitude earth satellites or for space travel, additionai

povered flight periods can occur after long periods of free flight. In order

to establish the initial conditions for the navigation loop at the beginning of

a aubsequent powered flight period, it is of course, possible to operate the

navigation loop during the free flight period. If this is done, (1) accelero-

meters must be disabled, since any output during the free flight period is

erroneous and should be ignored, (2) the gravity formula or expansion mist be

valid over the entire free flight region, and (3) the digital computer may con-

sume considerable power oover-_Aelong coast.

A second method for establishing the initial conditions for the second powered

flight or burn is to predict them from the observed first burnout position and

velocity. Since the guidance equations can control four of the initial condi-

tions, it is necessary to predict only the remaining three. The prediction

approach, vhich can be accomplished with either explicit formulas or polynomial

expansions, has the disadvantage of requiring more computer memory. All things

considered, though, it is usually the preferred approach for free flights of

any appreciable duration.

2.2 The Computation Function

Given the position and velocity of the vehxicle as well as the time, the computa-
tion function consists of utilizing this information to generate error or status

signals which can be used to control the flight path of the rocket in a way vhich

will result in the missions being accomplished. The functions used to generate

the control error (or status) signals are comonly called "guidance equations".

t•ii s6vn in Section 2.2.
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Thrust Kigriu~de Control - Rocket engines whose thrust can be -0-.trolled in

magnitude as well as direction are said to have thrdUSt magnitude control. Vehicles

with this feature have more flexibility. For example, they can bp •ade to fly the

exact nominal trajectory and hence can be made to burnout at a pr"-specified posi-

tion, velocity, and time. The guidance computations in this case crn be greatly

simplified, since it is only necessary to measure the three cc•.pcnents of thrust

acceleration and to compare them or their time derivative with the nominal profiles

vhich have been stored as functions in the airborne computer. By controlling the

direction (steering) and the magnitude (throttling) of the thrust it is possible

to match the stored profiles to an arbitrary degree, depending only on the response

of the control system.

A typical configuration for a system with thrust magnitude control is shown in

Pigure 5. Besides being simple to mechanize, such a system can be advantageous

Target

- Steering or c Vehicleinematics
Control Law& Dynamics V

VT t Inertialo • i Measurement

f Unit

Figure5 - A GUIDANCE SYSTE4 WITR TRIST CCIVTROL

wvhen it is necessary to match a desired trajectory exactly, as in the case with

the rendezvous problem. It should be pointed out, however, that the combination

of launch time variations and a non-earth-fixed target causes the nominal trajectory

concept to loose most of its meaning. Throttling in any case has not been con-

sidered desirable from a propulsion hardvare standpoint, so very few rocket engines

have this capability. The remainder of this chapter is therefore concerned only

with the class of vehicles whose thrust can be !ontrolled in direction only, and

whone thrust m~nigtudv. varlei In tho! order of a fov percent from engine to engine.
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Available Techniques - Most of the available techniques for guiding rocket

vehicles, were developed as a part of the various ballistic missile programs.

Since these vehicles are intended to deliver their payloads to a precise point

on the surface of the earth, the first approach to their guidance was to control

the missiles flight p .,.g on the basis of predicted errors in impact. Functions

of the form

Md - fd(A' R, t) (27)

NMc a f c(A, R, t) (28)

can be generated, where Md is the downrange miss and Mc is the crossrangc

miss, both at the target altitude. The functions will differ slightly with the

miss coordinate system employed. The one most often used is the so called

instantaneous impact p int (IIP) coordinate system. This is an orthogonal

coordinate system centered at the target, with the Md axis defined by the

downrange UIP locus or the locus of impact points which occurs when only the

thrust cutoff time of a nominal vehicle is varied.

Impact error in the actual system is controlled by changing the flight path

(steering) in the lateral direction (yav) until M is driven to zero and

then terminating-thrust when Md reaches zero. For this case, pitch steering

is not required, since only two degrees of control are necessary. Here an open

loop pitch attitude program can be used, e.g., constant attitude.

While the above scheme is workable, it has several disadvantages. First of all
the Md and MH expressions are both functions of seven variablei and are

laborious to ccopute. Probably even more iwoortant is the fact that the expressions

are not general and are awkward for anything but ballistic missile (ICt, I1MU, etc.)

applications. Rence, the "required velocity" concept is nov more generally used*.

*Ruch of the material on required velocity is extracted from, "An Introduction to
Inertial Guidance Concepts for Ballistic Mlssiles", (Tutorial Report) by David W.
Whitecube, Space Teehnology Laboratories, 12 April 1959.
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lequired Velocity - This concept is based on the fact that at each space-

time pdint in the powered flight region, a required velocity vector

R a R(A, t) (29)

may be defined and computed such that the resulting free flight trajectory will

satisfy four general guidance constraints.

Consider for example the ICPM trajectories shown in Figure 6. Although Al and
A2 arrive at point A at different times, all three trajectories can be made
to "hit" the target. That is, after a period of time, tff (the time of free

flight), the three trajectories satisfy the three guidance constraints that
be equal to A . Consider, however, the two trajectories originating at

- tffAl Trajectory Al

Al tffA2 - Trajectory A2

S/
tff "Trajectory B

A RA2 
-

B

Desired
Target

AT

Earth

Figure 6 T•-• FREE FLIGHT TA RI, WHICH

ALL HIT THE DESIRED TARGET

point A. In order to specify the required velocity at A , an additional

guidance constraint must be imposed. This should be obvious since it pre-

viously has been shown that only two degrees of freedom are required to
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control impact and VR naturally has three components. For example, it is

possible to hold the total time of flight from launch constant. This has

the effect of making an earth fixed target stand still, which sometimes has

certain advantagem from a computational standpoint. For this set of con-

straints, the missile vil reach the target with an arbitrary velocity vhich

depends on the particular burnout conditions. Some of the other possible

constraints are

1) Burnout velocity magnitude

2) 'urnout velocity elevation angle

3) Any component of burnout velocity

4) Burnout energy

5) Burnout angul%..r momentum magnitude

6) Velocity mamnitudLe at the target

7) Velocity elevation angle at the target

8) Any component of velocity w the target

9) Time of free flight.

Some Examles - it is not necessary to include all three target position

coordinates as constraints. For one satellite launch problem it was found

desirable to use the folloving constraint:

1) x - X

2) z - iT

4) constant total time of flight.

Here tff P • P iT , and YT are all allowed to vary. In the case of satellites

vhich have a number of thrust periods separated by coast periods, it is usually

desirable to use different sets of constraints during the various guidance periods.

The generality of the required velocity concept is illustrated by the fact that

the simple case of steering a vehicle to a particular velocity at burnout is

included. Nere the constraints are

3) T -

2) ff. -
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In this case, the target position which reduces to the burnout position will vary

depending on the propulsion system, winds, etc.

The above examples have illustrated that all essential guidance information is

included in the specification of the required velocity vector. If the missile

is steered in both pitch and yaw, it is theoretically capable of achieving

exactly the r.orxe -velocity when thrust is terminated, and hence capable of

satisfying the four guidance constraints. Since satisfying four constraints,

actually means causing three of the constraints to occur simultaneously with

the natural occurance of the fourth, it is reasonable that this degree of per-

formance should be attainable with the three degree of control available in

most rocket vehicles, i.e., pitch steering, yaw steering, and thrust termination.

An was pointed out in an earlier paragraph, it is possible to satisfy all seven

constraints if the rocket engine is throttleable.

Another Approach - Since only three constraints arc actually required to

cause a ballistic missile to impact at a target, it is sometimes convenient to

work in terms of a two component (x and y) required velocity vector. In this

case i is allowed to be arbitrary and VR becomes a function of i an veil

as position and time. Hence

R Of t, (30)

Since i is arbitrary pitch steering is not required for guidance purposes,

it may be used to satisfy antenna look angle constraints or may be eliminated

altogether in the interest of simplicity.

Some of the presently used methods for computing required velocity are described

in Section 3.

2.3 The Control Function

The basic function of the control portion of a rocket guidance system is to

steer the vehicle in a way that will cause the actual velocity to become equal

to the required velocity. When this occurs thrust is terminated and the

;The r-rk--o-F .?acPherson nt Space Technology Laboratories has shovn that it in
often rossible to satisfy more than four constraints, by steering in a particular
way. Ris vork is not covered here.
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guidance systems plays no further roll unless there are additional guided phases.

Since the steering loops are feedback systems, it is convenient to define an

error signal, the most coonly used one being given by the expression

S"R (31)

where V is equal to R , and where V is called the velocity-to-be-gainedg
or alternatively the velocity-to-go. It is the function of the steering loop

to drive I to zero; the steering loop is actually a velocity control system
.

with VR as the commanded input.

The Steering Loops - A block diagram of a high quality inertial guidance

system for rocket vehicles is shown in Figure 7. As can be seen, both the

navigation loop and the guidance equations are integral parts of the steering

loop. The velocity control law (or function) must be chosen so that some time

will always exist vhere all components of V are equal to zero. Since the

system is non-linear and time-varying, the development of the proper function

is not a simple task. While ballistic guidance systems are usually thought of

as velocity control systems, as stated above, an outer loop does exist. The

predicted values of the three or four target variables of interest are con-

stantly being compared with their specified values. This is, of course, done

impllet*Ly by the guidance equations. The result of the comparison is the

command signal for the velocity loop. In practice VR changes much slover

than 'I , so for stability studies, the former can be treated &A a forcing

function.

As was pointed out in Section 1.2, the relatively fragile nature of long

range rocket vehicles, usually requires that the steering be divided into

two phases: (1) an atmoserfc- phase and (2) a vacuum phase. During the

first phase, which corresponds to the region where aerodynamic effects are

apprecisbll and where the nominal trajectory is a zero lift, or gravity, turn,

only a rather "gentle" type of steering can be tolerated. Any violent maneuver-

ing will result in excessive structural loads which may cause the vehicles des-

truction.

*The term control system is frequently taken to mean attitude control system.
In this chapter, "control" has a more general meaning. When attitude control
is Meant, it will be so specified.



sot ~. 
8Th/TN -6o-oo~oo-(p186

100



Page 2 3

Steering Signals - The net result of the "gentle" steering requirement is

that V is usually not an acceptable steering signal during phase 1, because
g

of the violent maneuvering which it can cause. The two approaches which have

been used most successfully to date are

(1)" Progrinzing pitch and yaw attitude as functions of time.

(2) Steering the missile on some moderately well behaved function
such an one which comi ndswa given velocity profile, e.g.

null k with yav •cutrol and command a functional relationship

between x and i with pitch control.

Any scheme used during the atmospheric phase besides being "gentle" should keep

the vehicle as close as possible to the nominal trajectory, even in the phase
of perturbations, so that the required region of guidance equation validity

is minimized.

During the second or vacuum steering phase, yav attitude or attitude rate is
commanded with some function of V • Pitch attitude or attitude rate may be

commanded as in the atmospheric phase or by some function of 1 , depending

on the number of guidance constraints to be satisfied. In any case, thrust is
terminated when 1 reaches zero or nearly so. The steering problem, including

a number of presently used approaches, is discussed more completely in Section 4.

Regardless of the system used, excessive maneuvering should be avoided, LAnce

it is inefficient from a fuel standpoint.

This section has described a general type of rocket vehicle inertial guidance
system. It was Aiovn that the scheme has three main functions: (1) Navigation,

(2) Computation, and (3) Control. Such systems can theoretically achieve almost
arbitrary accuracy, limited only by the capacity of the airborne computer. In
practice, of course, coonent errors place a limit on the achievable performance.
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3.0 GUIDANCE EQUATIONS

Given the time•_and the position and velocity of a vehicle, a guidance system

must be capable of generating signals which are a measure of the vehicles present

aOility to accomplish its intended mission. These signals are in turn used to

modiily the flight path and to terminate thrust in a way which guarantees that

all guidance constraints will be satisfied. The generation of these error or

status signals, which was referred to as the computation function in Section 2,

is accomplished through the use of guidance equations. Two of the more common

types of guidance equations are discussed in this Section; both are based on the

required-velocity concept.

In general the closed-form computatiou of required velocity for the case of a

rotating, oblate earth with atmosphere is not possible. Approximate calculations

of more than adequate accuracy can be accomplished, however, in a number of ways,

two of the more useful ones being

1) Explicit Guidance Equations

2) Delta Ouidance Equations

Prom a practical standpoint, the wAethods differ in two important respects:

(1) complexity of the in-flight computations and (2) amount of targeting or

pre-computation required. 1Pasically one can be traded for the other. Explicit

equations are rather complicated from a mechanization standpoint, but require

a minimum of pre-computation. For delta, essentially the reverse is true.

The selection for any a:tual system will depend mainly on the relative importance

of these two points.

3.1 •yliclt Guidance Equations

The mout straight forward approach to the guidance of a b-llistic vehicle is

to work directly with the free flight equations of motion. For purposes of

illustration consider again the case of a missile traveling in a vacuum under

the influence of a constant gravity field (ulually called a "flat earth"). The
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equations of motion as previously given in Section 1 are

x - x0  x0t ff (32)

z - zO + iot - 1/2gt2 (33)

2
where x is dovnrange, z is up, and g is equal to 32.2 fps . The geomtry

tI shovn in Figure 8. Motions out of the trajectory plane are not considered

for the present.

xt, zt, T

x

Figure 8 - FLAT EARTH ELICIT GUID CE EXAMFL

If the total time of flight in constrained to be equal to T then the x

and z components of the required velocity, VR , are given by

v x t 0 (34)
Rx T - to

-w t 0+l/2 g(T - t (35)Rz T t 0o
T- 0

where

tff " T- t (36)

If the missile is steered in pitch so that Vz is equal to VRz and if

the thrust is terminated vee--V- is equal to VRX , then the missile vill

pass through point (xt , zt) at time T
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If impact time is of no interest as is sometimes the case, the tir of free

flight, tff, can be found from (33) as a function of z and . as given by

tfo + -z /'2 " zg(z - zo)t• ff 0 (37)

Substituting the expression for tff , (37), back into (32) giver the expression

for VRx

g(Xt - xo)VxF- (38)
z + _V,•z - 2g(:t - 1o)

The computation of V x is more complicated than in the constant lime of flight

case, but the need for pitch steering has been eliminated, and it as nov only
necessary to cut-off the engine when Vx Is equal to V . For either of these
simple systems, which actually approximate the case of a short r --e missile,
lateral motions can be handled by constraining the missile to fly In the launch-
target plane, i.e., by nulling y and k by means of yaw steerir:. The case of

a moving (but not accelerating) target is easily handled by the u! of a target-
fixed coordinate system. If the target is accelerated, but in a knovw way, the
problem can still be solved, but the equations are more complex.

The Spherical Earth Case - The more important and considerab more com-
pli-ated case of a missile traveling about a spherical earth will nov be investi-
gated. The effects of earth's oblateness and the re-entry atmospY're (in the

case of a baIis:sic missile) are relatively small effects, which -,n be handled
separately, and which vill be discussed later. If the trajectory .,; again con-
sidered planar, the Lagrangian function for the missile in free f' tght is equal

to

L W(. (2 br2•) . GM (39)
r
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vhere r and G are earth centered inertial (ECI) coordinates. From (39)

the eqimtions of motion are found to be

.2 ami. -6 _ . 0 (40)
r

d (r2;) u 0

Equation (41) may be integrated directly to give

c1

em- (142)
r

If the variable p i j is introduced, then

r -p(143)
dt dt dr - dr

Substituting (42) and (43) into (40) gives

Ca ý2 * G 0 (4~4)
r r

which can be integrated so that

2 C2 '
P_ + C2 (45)

2 +r C22r

Re-arranging (45) and taking the square root of both sides leads to

p . V2C2 e ?G i (146)r (.4
r

But since

drde dr (7)
Tor -d t' dO- -r
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equation (46) becomes

~~~- dr (148)
/2C r2

2 2Q4 r 1
C 1 2 C 12

vhose integral is

1 -
0  2C C

' i + -- - -- -

Since 0 is arbitrary it can be set equal to zero. The equation can then

be re-written so that

l2

cr v _--_-_1(50)

2C 1 C 2
GM(i 1 -AF+ - sin e)

This, however, is identical in form to the equation for an ellipse with one

focus at the origin

r v - e2) (51)
r ge -1 - e sinO

vhere a is the semi-major axis and e is the eccentricity. By equating

similar coefficients in (50) and (51), the constants of integration are related

to the elliptical constants as follows:

2) (52)

C2 am- (53)
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Therefore using (42) and (53), equation (45) can be reduced to

r +(Or) -v - CM(, - (5)4)
r va

This is the so called "via viva" integral of celestial mechanics* vhich

simply show that the speed of a body in orbit depends only on its distance

from the center of force. It nov becomes a problm in analytic geometry to

derive an expression for the velocity required to hit a desired impact point,

since (54) clearly shove it is necessary to have only the semi-major axis of\

the free flight ellipse joining vehicle and target.

The Required Velocity Expression - In order to derive the e.xpression for

the semi-major axis of the-elapie, it is necessary to use the folloving tvo

properties of an ellipse:

(1) The sum of the distances from any point on the ellipse to the tvo

foci is equal to the major axis of the ellipse.

(2) A line normal to an ellipse bisects the angle betveen the tvo lines

to the foci.

The geometry of the situation is shown in Figure 9, where r and rt are the

missile and target vectors, * is the range angle, and r is the angle of

R vith respect to the local vertical. From the figure it can be seen that

2 2 2 (55)x +y, = •--(5

y - r + (2a - r)cos2r - rtcosO (56)

x - (2a - r) sin2r - rtsins (57)

*'Similar derivations of the "vis viva" integral can be found in almost any
book on classical mechanics, e.g., McCuskey, S. W., "An Introduction to Advanced
Dynamics", Addison-Wesley, 1959.
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Free Flight
Trajectory

Focus r t

(Earth Center)

Figure 9 - GEOTM Y OF SD41-MAJOR AIS CALCtTIO0

k.vaiu (55), (56), and (57) for a gives

a r[ rt(l - cob 1 (58)
r -1 rt - r cosr + rt cos(2r-)

Tis them is the semi-major axis of an ellipse which contains the missile and

the target andIs tangent to the required velocity vector.
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Substitution of (58) into (54), the "vis viva" integral, gives

2 204 1 -cos* (59)VR r-r `-(i - eos~r) - coo, + cos(2r - s)

rt

which is an expression for the required velocity in terms of the missile and
target distances from the center of the earth, the range angle., and the velocity
vector angle. It may be computationally convenient to mechanize (59) as a vec-

tor equation, replacing cosines vith dot products. Thrust termination can be

commanded according to either of two criteria
2

V) = 1 (60)

VR - v *0 (61)

where VR and V are both-scalar quantities. Equation (60) has some advantages

since it tends to be linear in the region of cutoff.

Effect of Earth's Rotation - Thus for an equation, (59), has been derived

which gives the velocity required to hit a particular point in inertial pace.
Most targets, hovever, are not fixed in inertial space, they are usually either
in orbits of their own, or they are fixed to the earth and rotate vith it. In

particular the EW rectangular coordinates of an earth fixed target at some.
future time are given by

= rt coo e o( -8t + w T") (62)

-tt -"- e f

Yt w r t cos et sin(t + we T ff) (63)

2t - rt sinct (64)

where et and *t are the latitude and reference longitude of the target and
where we is earth's rate and Tff is the time of free flight.
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The above equations clearly shov that in order to predict the position of the
target at impact, the time of free flight must be known. The time of free

flight, hoever, depends on VR which in turn is a function of the impact

position. Hence, an iterative procedure results as follovs:

1) A future target position is assumed.

2) The corresponding required velocity is computed.

3) The elements of the resulting ellipse are computed.

4) The time of flight is computed.

5) A new future target position is computed.

6) The prcedure is repeated.

Because the earth moves rather slowly (1000 fps at 145 latitude), the time of

flight calculation is not very critical and the iteration can be carried out on

a cycle by cycle basis. This is not necessarily the case for targets in general.

The derivation of the expression for time of flight begins with the "via viva"

integral, equation (54), which is equal to

( ) 2( -2 ) (65)r a

Previously it vas shown, (42) and (52), that the angular momentum of an orbit

is constant anA is given by

r26 C l( - e2(1- ) (66)

Squaring (66) and combining the result with (65) gives

.2 G 2(1 - e 12
r + -a (67)

r r

Multiplying through by r2 /a and rearranging leads to

2 2(ri) , G Fe (1 (68)
aI

L
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It is nov convenient to introduce another frequently used orbital parameter - E ,

the eccentric anomaly. The geometry which defines the angle is shown in Figure 10.

y

!/

SRadius.

_Vl 'e
aer

S/

E 
x

off

Earth

Pigure 10 - CRBITAL GEO' ScrOING MWAN ANNC!ALY ANMLE

Concentric circles of radiua a and b are drawn. If a radius vector is

drawn at angle E with respect to the x axis, and if parallels to the x

and y axis are drawn through the points where the radius vector Intersects

the small and large circles, then the inter-section of the two parallels will

be a point on an ellipse. The eccentric anomaly is a way of designating a

particular point on the ellipse Just as is e .

From the geometry of F•ige10-e7it is easily shcvn that

r - (1 - c cos) (69)
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or that

e cosE - 1- (70)a

Therefore (68) becomes, after taking a square root,

r_ * e sinE (71)
4az

Multiplying (69) by its time derivative gives

ri a aC e sinE(l - e cosE) E (72)

which can be combined with (71) to give

*-m a3/2 (1 - e cosE) (73)

which in turn can be integrated directly to give Keplers equation

a3/2(E - e sei ) = M t + c (74)

where C is the constant of integration. The time of flight Lo ,the target

follows directly from (74) and is given by

tff• (GM)" 1/2 a3/2[(Et - E) - e(sinEt - sinE)] (75)

where E and Et are the eccentric anomolies of the missile and target
respectively. Since all terms of (75) are easily computed from orbital

relationships, the inertial position of the target can be obtained.

Other Effects - The scheme described here is designed to hit a target
moving in a known manner, such as a point on the earth or a .atellite. It

does not require control of radial velocity, i.e., the pitch attitude program

can be arbitrary. If a more general guidance problem such as the placing of

a satellite in orbit is to be solved, then radial velocity must be controlled

and the equations become more complicated.
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Thus far no mention has been made of ways to compensate for re-entry and oblate-

ness effects, nor have ways to handle motions out of the orbital plane been con-

silered. The first two effects, it turns out, are relatively small and can
usualUy be handled by tabulated target offsets which are functions of range,
azimuthp latitude, etc. The last effect is more complicated in that some steering
is necessary. Basically -.U that is required is that the vehicle have no velocity
normal to the plane containing the vehicle, the target at the time of impact, and
the center of the earth. The normal velocity is given by

v N . t (76)

which can be used as the error signal for yaw steering and is analogous to V .gy

3.2 Delta Guidance Equations

Until very recently, the complexity of explicit equations made them very unattrac-
tive for use in inertial guidance systems. Airborne computers of reasonable size
simply were not fast enough to solve the equations in real time, e.g., once or
tvice per second. It was therefore necessary to find other ways to handle the
problem. -

Since, as has already been stated, vehicle perturbations are relatively small
(in the neighborhood of a few percent) it was only reasonable to think in terms
of guidance equations which are power series expansions about a nominal trajectory.

General Development - A power or Taylor series in one variable is of the form

f(x) f(a) + f (a) (x - a) + f"(a) (x - 2 +.... (77)

where x is the variable and a is the point about which the expansion occurs.
For a function of two variables, f(x , y) , the series is of the form*

f(x,y) -f(apb) * IX-a) . + (y-b) FYJ f(x~y
. 2a,b

+ x-a) + (y-b) f(xPy) ÷ .. (78)

"*See any advanced calculus book, e.g., C. R. Wylie, "Advanced.Rngineering Mathematics,"
pp 598-604, McGraw-Hill, 1951.
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Vbere -x and y are the variables and ab is the point about vhich the series

is expanded. The similarity to the one variable case is unmistakable. The ex-

tension to three or more variables is equally clear.

As has been shown previous, VR has either tvo or three components depending on

the number of guidance constraints to be satisfied. In the more general three

component case, each component is a function of four variables - x, y, z, and t.

They are, of course, implicit functions of the guidance constraints themselves also.

If expansions are to be found, then an expansion point must be selected. The first

approach might be to select points .. l1 along the nominal trajectory and to program

them as a function of time. Coefficients would have to be determined correspond-

ing to each expansion point and the three expansions (VRx , V.y, and VRz) would

be time'varying. If the number of expansion points used was very large, the air-

borne computer storage requirements could easily become excessive.

A little reflection onthe problem, however, soon leads one to the conclusion

that the expansions need to be highly accurate only in the itrnediate vicinity

of burnout. Rence, only a single point and a single set of expansions need be

used, at least for any one guidance phase. Since the nominal burnout point

(zo ' yo' zo, to) is usually considered to be the most likely burnout point,

(or vector) it is usually selected as the expmasion point. Three expansions

similar to the following VRx expression therefore result.

V Rx x 0 + kxx6x + kxY 4V + kXz 6 kxt&t + kxxxax2

+ k XXYAx 4. r kr (79)

where ax - (x-xo), py - (y-yo), etc., the delta quantities, of course, giving

the equations their na. The coefficients, kxx , kXY , etc., are basically

partial derivatives and are defined by the corresponding terms in (78). Usually

linear and some second order terms are required depending on the probable size
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of the "burnout box" and the accuracy required. The number of termn required

vill depend also on the miss coefficients in the direction of the expansions

validity.

A Flat Earth Exasple - In order to illustrate the vorking of delta equa-

tions, a flat-earth, tvo-Amnstonal case vill again be considered. The nominal

trajectory parameters are those of the V-2 missile from Section 1 and are an

listed in Table 3.

Table 3 - V-2 TRAJECTORY PARAMMTS

Parameter Symbol Value

Horizontal BO Position xO 85,000 feet

Vertical BO Position z0 123,700 feet

Horizontal PO Velocity o 3,500 fps

Vertical BO Velocity i 0,800 fps

Time at BO t 0  70 seconds

Horizontal Target Position xt 1,212,0OO feet

Vertical Target Position Zt 0 feet

Time at Impact T 392 seconds

The constant time of flight constraint will be employed (T - 392) and both

linear and quadratic terms will be used. The coefficients can be obtained by

performing the appropriate partial differentiations on the explicit expressions

for VRx and VRz , (34) and (35). The coefficients are summarized in

Table 4. It can be seen that while there are 18 possible linear and quadratic

termro in the two expansions, only 8 are non-zero fi,- the flat-earth, constant-

time-of-flight case. The biggest reduction is due to the absence of cross

coupling between the x and z channels.
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Tambie 4 - LINRAR AND QUADRA7TC DELTA COITFICIERT FOR V-2 TRAJECTORY

(Constant Tize of Flight)

Coefficient Definition Expression V-2 Value

ýVf- 13
T t -3.1x10 3

JVRI 0

k2v Rx 0 0

mX xx

1 ý2v Rx ý2vRX
jk ,k7- - 7-z 0 0

kXi: xzt 2 2 ' z-

kkxt 2v R 1 2 -9.6x.106

ME- - (T -t 0 )

k, ~ 1 ýZV Rx (xt - X0 ) 3.xO-2

zX0 0

k RZ 7T 1I-3.lxlO" 3

kt ) 1£ 17.3
(T - t 0 )

k k 1 2 Rz VRZ00k21 x %X1 t 0-0

a~v 2?V
k 2  ,k 2  1 Ri Rz 0 0

1~ , L .. -9.6xJ.0 6

k zzt 7-iCT t 0 )2

k1 RZt 0 37l3
ztt - 3

_T t
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Using the V-2 parameters, the V and V expansions become
Rx R

Rx 350 -3.1 xlO' 3 (x - 85,000) + 10.9 (t - 70) (80)

- 9.6 x 10 6 (x - 85,O00)(t - 70) - 3.4 x 10 " (t - 70)2

PR 14800 - 3.1 x lO13 (z - 123,700) - 17.3 (t - 70) (81)

- 9.6 x l0-6 (z - 123,700)(t - 70) - 3.7 x 10i (t - 70)2

Within the airborne computer, it is usually convenient to group the terms some-

what differently, lumping the constants all into a single term.

In order to give some idea of the accuracy of the equations as well as the

relative importance of the various terms, the equations have been evaluated

for three sets of perturbations, one of which corresponds to the launch point.

Tho results are sumarized in Table 5. The launch point, of course, is not

an expected burnout point and is only included for the purpose of placing

somrn sort of an upper bound on equation error. For the other randomly selected

perturbations (which are abnormally large by any standards), the equations per-

form quite well. Even with linear terms alone the V-2 impact error would be

veil under a half mile if the missile were to burn out at these points. The

example also graphically illustrates the relative importance of linear and

hivhir order terms.

The More General Caýe While the flat-earth example illustrates very

well the functioning of delta equations, it gives a somewhat over-simplified

picture of the effort that must go into obtaining the coefficients - a Job

usually known as "targeting". For the flat-earth case, simple formulas are

available for the required velocity and the partial derivatives are rather

quickly obtained. The VR formulas themselves are simple enough to pro-

bably obviate delta equations.

7;--tW P writer's knowledge, the first successful application of doulta guidance
equations to long range rockets vas a result of the Joint efforts of J. Caroll
of American Bosch Arma Corporation and F. Baskin and T. W. Layton of Space
Technol ogy Laboratories.
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Table 5

BERAVIOR OF DELTA JTIDANCE EQUATIONS FOR V-2 TRAJECWMO1

(ALL VELOCITIES IN FPS; CALCULATIONS TO NEAREST I FPS)

Launch
Lx . 20,000 ft 6x a - 10,000 ft 6x - - 85,000 ft
6z - 30,000 ft A_ a - 15,OO0 ft 6z - - 123P700 ft
6t - - 10 sec 6t a + 10 sec 6t - - 70 sec

VRX VRz VRx VRz VRx VRz

Constant Term 3500 4•800 j 3500 i(&)0 3500 4 .800

Lx - 62 0 31 0 263 0

Az 0 93' 0 46 383

at -109 173 109 -173 -763 1211

AxAt 0 0 I 1 0 - 57 0

At 0 3 0 1 0 -83

(A+)2  3 0 3 0 166 - 18

#R (Linear Terms) 3329 48W 364O I67'4 3000 6394

(L and Q Term) 3334 14•3 3644 146714 3109 6293

9R (From Formula) 3333 4882 361414 14675 3092 6311

Error (Linear) 4- -2 4h -1 -92 83

Error (L and Q) + .1 0 0 17 -18

Impact Miles 0.10 0 o.62
Error for
L and Seconds 0.06 0 -1.1
Delta
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When a rotating, oblate earth vith re-entry atmosphere is considercd, the picture

chans, s. While explicit equations for a spherical earth vithout atmosphere are

presented in Section 3.1, it should be pointed out that even these approximate

equhtions are iterative in nature and can not be readily differentiated in order

to obtain delta coefficients. The proceiutre which has evolved to generate delta

constnnts basically consists of the follovitn two step3:

(1) The required velocity (Vx , , and V *) corresponding to each of a

large number of x , y , z , and t perturbations is found by using

iterative procedures on a digital cceputer free flight simulation. The

simulation is a very precise model of a rotating, oblate earth with at-

mosphere. The points are selected in a vay vhich makes them correspond

as closely as possible to actual, realizable powered flight burnout

points. The IR will, of course, be a function of the constraints

used.

(2) The empirically generated VR data and the corresponding perturbations

are used to generate the delta coefficients by means of least square

fitting procedures.

The procedure for generating each of the three expansions is the same as the one

for V which is sumarized-by-

7 4 kxAj(p~k)......., _ 6VR(P~k).... ( (82)
. 1 )

where

N - number of data points
(.k)" ...... p 4 Ax, AY, 6z, and At from the kth data point.

6J = functionis of (p 1 ,...., pO) like &x, 4y, •xay, etc.

k -- coefficients of Lj in the VRX expansion

n - number ofeltWterms in arR

V Rx= V -x o

The f\unctions, &J , and the number of terms, n , are chosen to obtain the

required degree of accuracy. It usually turns out that n is somewhat less for

VRY and V than it is for V . The actual differences dcpe.nd mainly on

the coordinate system and the constraints employed.
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The linear VR coefficients can also be obtained from the linear target miss

expansions. Ssince these expansions are more easily obtained (no free flight

iterations are required), the procedure is sometimes used when only the linear

coefficients are required or vhen it is desirable to simplify the fitting pro-

cess. Consider for simplicity the two dimensional case. The linear miss

expansions are of the form

M X XMx ) X (83
x x zM M M H

H2 Mý 6X+ -''Z+ýXa (814)

where Hx and Mz are the x and z deviations from xt Z t at time
equal to T (or as any other third constraint is satisfied). If the misses,

A p are set to zerop then the resulting tvo linear equations can be solved
simultaneously for 4i and Ai . The resulting expansions in Ax , At , and

At vill be identically the same as the linear VRx and VRz expansions. As

an example, the Ax coefficient in thq V Rx expansion is

11mz x x M )z,

ýVft Z -xý-t)(85)(x.=-M~x )Mz 8Mz bMX (•

The results are similar in the three-dimensional case, except that numerator

and denominator contain six triple products, rather than two double products.

Numerically, the computations are trivial in either case.

Summary - Explicit and delta guidance equations have been described and

examples of each have been given. While these are not the only guidance equa-

tions currently being used, they do typify the two larger classes into which

all guidance equations might be grouped, namely total equations and perturba-

tion equations. Total equations require less pre-computation and vill work
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for larger vehicle .and environmental perturbations. Perturbation equations,

hovwver, are simpler to mechanize and are inherently more flexible, since all

guidance constraints can be changed simply by changing the constants. As has

been stated previously the choice vill dipend mainly on opeý-ational requirements.

Frequently it reduces almost to a matter of personal choice.
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4. 0 V"MCLE STEERING

In the previous section, it was shown that methods exist for continuously

computing the required velocity for a rocket in flight. The third and final

function of the_guidance system, as described in Section 2, is the control

funztion, i.e., the vehicle's flight path must be directed in a way which will

cause all three cozponents of the velocity-to-be-gained (Ig = VR - V) to reach

zero simultaneously. For reasons developed in Section 2.3, the steering is

usually broken dovn into atmospheric and vacuum phases. In this sectionp the

steering problem is discussed in some detail and a fev of the currently used

methods for each phase are described.

4.1 The Atmospheric Phase

During the atmospheric phase, the steering of a rocket vehicle is basically

"open loop", i.e., V is not used explicity to control the flight path.g

Instead some less violent variable such as attitude or velocity is used to

maneuver the vehicle in a way which will keep it as close as possible to the

noitinal trajectory without causing excessive structural loading.

The starting point for most atmospheric steering schemes is the open loop or

reference trajectory, usually a "kick" trajectory. This non-physical trajectory

is generated on a digital computer by causing the missile to rise vertically for

some period of time, at the end of which the vehicle's attitude and velocity

vector are instantaneously rotated downward by an amount known as the "kick"

angle. From this point on until the missile is essentially out of the atmosphere,

the thrust vector is caused to be directed along the velocity vector and the

missile flies a gravity turn. Beyond the atmosphere some arbitrary attitude

prograi, usually a constant angle, is flown.

Since the velocity vector of a physical rocket c-nnot be instantaneously

"kicked", the transition from vertical rise to gravity turn actually takes place

over a period of time known as the transition turn, the length of which is
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measured in tens of seconds. An ange of attack must of necessity exist during

this period, but fortunately this occurs before the dynamic pressure has not

had time to build up.

The simplest approach to steering in the atmosphere is to program vehicle

attitude or attitude rate as a function of time. Yaw attitude is held to zero,

and pitch attitude is commanded as it occurs on the 'kick" trajectory. The

"kick" angle is actually caused to occur slowly over a period of a few seconds.

A typical pitch rate program is shown in Figure 11. The program, which in this

case changes in steps can be generated mechanically or electronically. The

1.2

Transition Turn

c G aravity Turn
(deg/sec) .4

SConstant Attitude,

0 100 200 300

. Time in Seconds

Figure 11 - TYPICAL FflCr RATE PROGRAM

corresponding pitch attitude program could also be used. In that case a more

continuous program is required, since attitude is commanded directly, without

the smoothing effect of an integration.
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Velocity Steering - Somewhat better performance is obtained by steering

the missile on velocity. The velocity may or may not include integrated gravita-

tional acceleration. Consider first the case of thrust velocity alone, i.e.,

the integrated output of accelerometers. The coordinate system is shown in

Figure 12 where x y z (down range, left, and up) is a launch fixed inertial

coordinate system. If the z axis is rotated counter-clockvise by an angle X ,

z

Flight Path

rigure 12 - COORDINATE SYSTM FOR TMUST VELOCITY STEERING

the u axis is obtained. The integrated outnut of an accelerometer mounted

along u will differ from ý at any instant of time by the initial value

of a and the integrated gravity term. If X is equal to 90 minus the

constant attitude angle, it can be shown that for typical open loop trajectories

the actual integrated accelerometer output , u , will have a time history

of the form shown in Figure 13.

*Actually, of course, t1 may be the outputs of two or more accelerometers

suitably combined.
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/
//

ua /Constant Attitude Phase

t

Figure 13 - INTEGRATED ACCELERCMETER OUTPUT FOR TYPICAL TRAJECTORY

The shape of the curve suggests an exponential approximation of the form

t

-a f "(-e "p) (86)

If the vehicle can be caused to fly such that (86) is realized, then a gravity

turn will result. This can be accomplished by comanding a pitch rate

ec K-- " T Kp[Ua + iLa - ii f (67)

If c /Kp is small, then (86) is an exact solution of (87). If it is desirable

to command attitude rather than rate then (87) can be integrated and the command

becomes

6c - - (T p a +ua -utt + C] (68)
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It may be necessary to fit the da (t) vs t curve with two or more exponentials

and to change constants at some convenient point such as a staging point. This

is especially true if this type of steering is to be used over the entire flight

rather than for the vacuum phase o0 ty. Velocity steering in yaw is accomplished

by an attitude command of the form

" - Ky(tyita ya' (89)

Here there is no forcing function and the yav steering loop is actually a nulling

loop.

A somevhat more general pitch velocity steering scheme consists of controlling

the flight path of the vehicle so that

V a f1(Vx , x , z , t) (90)

Again a variety of coordinate systems with and without gravity may be employed.

An earth fixed coordinate system works particularly well, since the earth's

atmosphere rotates with the earth and therefore is at rest with respect to the

coordinate system. The bteering necessary to realize (90) can be acc=mplished by

attitude perturbations given by

beVc KP- IV - f 1(Vx , x , z , t)] (91)

where 60/1C is a small number. At the same time the nominal pitch program can

be written as a function of one or more variables, e.g.

einc f 2 (Vx , x , z , t) (90)

Combining (91) and (92) to get the total pitch attitude angle command gives

ec a enc + c a f3(Vx , Vz , x , z, t) (93)
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In practice it is frequently found that the x , z , and t terms are not very

effective and an expansion in V and V may be all that is necessary, e.g.x 2

9 K V +KV2 (94.)
C r 2 -xr-- x

The coefficienta &re obtained by selecting a number of points from the standard

trajectory and using least square fitting procedures as vws done for delta guidance

constants. The difference here is that it is not necessary to use points from

perturbed trajectorien.

Velocity steering as typified by (88) and (94), although more complicated, has

at least two advantages when compared with attitude-time prograimmng. First the

mirsile angle of attack due to a wind snear is reduced somewhat. This is due to

the fact that the dynamic action of the loop causes the vehicle to "weathercock"

into the wind. The second and primary advantage is that the trajectory perturba-

tions due to vehicle perturbations are greatly reduced. When any type of pertur-

bation guidance equations, e.g. delta, are used, this fact results in a reduction

in the complexity of the equations and hence a simpler computer mechanization.

On the debit side is the fact that this type of steering tends to "work" the

attitude control system harder and as a result stability margins at vibration

frequencies may be slightly reduced.

4.2 The Vacuum Phase

Once the vehicle is out of the atmosphere, structural constraints can be relaxed

and the steering system can begin to perform its prinary function, t'A&t of re-

ducing Y to zero. A steering or computational coordinate system is usually
g

selected which aligns the x axis more or less wit! the desired thruwt direction

during the latter portion of powered flight. The signal Vgx then represents

the principal component of velocity-to-be-gained and V and V are con-LY 52

siderably smaller.

*The coordrnate system used in Section 3 had the z axis aligned with launch
vertical for purposes of simplicity. If pitch steering 1 done, it is usually
necessary to tip the coordinate system.
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One method which will cause the y and z components of V to vanish atg
cutoff is to drive these quantities continuously toward zero from the "initiation

of guidance" This can be accomplished by interpreting Vgy and V z as error

signals which are to be nulled by suitable attitude or attitud- rate colmmands to

the autopilot or attitude control system. Stability considerations usually re-

quire that some type or rate information also be included for damping purposes.

A typical pitch attitude comnand would be of the form

ec eo +KVgZ +K 2 Vgz (95)

where e 0is the nominal pitch angle. If a rate attitude command is to be used0

it would be of the form

03 -K V_ (96)%3g 4 gz

The yav commands would be the same only, of course, V would be replaced by8z
Vgy , In order to reduce certain steady state errors it is often desirable to

include also an integral term in the steering expressions.

An Important Modification - While a scheme as outlined above is capable of

driving 1g to zero at cutoff, it has one basic shortcoming. Even though the

y and z components of V are small compared to Vgx at guidance initiation,
they are still sufficiently large to cause excessive pitch and yaw commands and

hence substantiasl-mneavering of the vehicle. As a result even a nominal vehicle

is oauspi to deviate considerably from the reference trajectory and this is

objectionable for two reasons: (1) it results in a non-optimum use of propellants

and (2) It means that the required velocity computatirn mast be accurate over a

larger region.

*"Initiation of guidance" is a term often used to indicate the time at which
the vehicle steering is switched from the atmospheric phase to the vacuum phase.
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The reason for the occurance of the above maneuvering becomes clear when it is

realized that under reference conditions the y and z components of V differg

substantially from zero prior to cutoff. Figure 14 gives the general shape of the

three components for a typical ]ong range rocket vehicle. The actual shapes will

Velocity

Figure iU - O•~A SHAPE OF V C •4(~Tg

depend on the trajectory, coordinate system, and guidance constraints. The net

result of this finding is that not Vgy ard V , but rathe' their deviatiuns

from nominal should be used as steering error signals. If this is done non-

nominal missiles still "wander" to some extent, but not excessively so.

If the standard values of Vgy and V are to be programmed, the question

arises as to the independent variable against which they should be programed.

Time or velocity might be used, but further consideration leads to V as the

best choice. The pitch and yaw error signals are then of the form

V z - V - f(v) (97)

p V gz (8

V Vg - f(v) (98)
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where the fmnction may be simply V multiplicd by % constant, but usuallygx
includes higher order terms. The function will be equal to zero at cutoff;

hence the error signale become equal to V and V at cutoff. This, ofgz gy

course, is the dominant reamon for using V as the programming variable.
gx

C

Cross Product Steering - The steering method described in the preceeding

paragraphs depends on the existance of a standard or reference trajectory. Fre-

quently, especially vhen explicit guidance equations are used, the reference tra-

jectory concept loses its meaning. It I s then that more general steering nethods

must be employed. The best known o: these is cross product steering where the

vehicle Is caused to have an attitude rate proportional to V x V
g g

The ft•daaental justification for the method begins with the definition of
g

17 " i" (99)

which when differentiated with respect to time gives

v . v - v (1oo)

Since V is missile acceleration which during powered flight is due to thrust

and gravitational accelerations, (100) can be rewritten

Vg a + (i( -V ) 0 (101)

where i is the unit vector in the direction of ; , the thrust acceleration.

Let u be a unit vector along V • Ther.efore

V . Vu9 (l12)

and --- -

Vg Vu +Vu (103)

;Ms Section is mainly on work by J. 1. Bachar, F. Baskin, and D. W.
Vhitcombe of Space Technology Laboratories.
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Combining (10].) vith (103) gives

(vi+ •) ( R 0 (104)

Taking the dot product of (104) and u results in

+g ar(•.;) . ( .*R) . 1 05)

since u.u - 0 and u.u - 1 • If then the thrust is directed along the V
g

direction, i.e., , (105) is reduced to the scalar equation

S+ •r a ( " ) ] + 0 (106)

The necessary and sufficient condition for the monotonic decrease of 9 to
-

zero is that V alvays be negative. This indeed is the case as long as

< R (107)

which in turn is true for current high acceleration rocket vehicles. Hence it

has been shovn that causing the thrust vector to be pointed along the Vg
vector guarantees that V will be driven to zero, i.e., all three compon-nts.g

What then does this attitude requirement imply with regard to vehicle attitude

rates? As was stated in (102)

"(108)

The time derivative of (108) is shown to be

v 2 -(0



Since u is a unit vector, it in true that

w . x u (0o)

and hence

V V V ¾
g V g V

g g

The second term i, identically zero so the turning rate of the V vector is
g

equal to

& . •(n2)
xV

g

If the thrust vector is to be kept aligned with the V vector (I u
9

then the missile turning rate must be equal to (112).

An examination of (112) reveals that the V vector's turning rate becomesg

infinite at the instant of cutoff. Since no physical missile has this capability,

there vill alvays be some steering error at cutoff vith this approach. This situa-

tion appearc to be analogous to a pure pursuit course where infinite turning rates

are also encountered at impact. In that case the situation is alltviated by modify-

il* the course to include a lead angle. In the case of steering a similar effect

is achieved by biasingout the nominal error, since the error turns out to be

relatively independent of trajectory perturbations.

In practice the commanded vehicle turning rate is of the form

CD w KR 9 x• V (113)

where K may or may not be a function of V • The pitch and yav commandedg
rates vill be equal to

0 -- K[V 'g, -V V ] (uI)
P ~ gx gz g1 gx

uk K(Vg gy -v V (15
gx~r gy gx
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The corresponding roll rate contains redundant information and is uot used. An
equivalent system which ccamands angles rather than rates is possible, but will
not be descr.bed.

The cross product steering scheme causes the vehicle to fly a nearly constant
attitude trajectory "hich is desirable from a futel standpoint. At guidance
initiations, the system commands rather large rates until the proper attitude
is obtained and makes only small changes thereafter. The system does not attempt
to remove y or z components early, rather it attempts to drive all components
to zero simultaneously.

4.3 Thrust Termination

It has bee-n shown that it is possible to steer a rocket vekh.cle in a vay vhich
guarantees that all three components of the velocity-to-be-gained vill reach
zero at the same instant, p-iM•vch time thrust is terminated. If the steering

system is perfect, i.e., all three components of t become uniquely zero,
9then the magnitude of • or the magnitude of any component of V is useful

9 9
as a cutoff signal. In a practical system where steering errors vill occur due
to both static and dynamic effects, the signal is usually given vhen

Vx co (u6)

where Kco is some allovable tolerance on cutoff velocity. The V x com-

ponent is chosen for a number of reasons:
(1) The coordinate system is usually chosen so that JVgxi is nearly equal

to IVgi.
(2) Vgx is usually already available since it is necessary for steering

purposes.

(3) If either Vgy or V were used, small errors in these quantities

could cause large cutoff errors, since usually Vgx >> Vgy or Vgs

!Urther consideration of the cutoff problem depends on the type of engine employed.
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Systes With Liquid Fmgins.e - Thrust is teruinnted in a liquid propelulnt

engine by closing valves in the fuel and oxidizer lines. Since the lines paot

the vflves and the thrust chamber Itself contain a certain amount of the liquids,

thrust actually continues for a fraction of a second after valve closure, a

typical value being 0.2 seconds. If the acceleration near burnout is 10 g's, and

a linear decay is assumed, 32 fps is added after valve closure -)rresponding to

32 miles miss in the case of a 5500 mile miseile.

A known residual impulse can. of course, be handlni4 by ant.i),atlng its effect and

calling for thrust termination %ten V is still positive by the required amount.gx
The real difficulty comes from the fact that there is some uncertainty attached to

the residual imp-lse due to valve nperating times and other factors. A typical

number here might be 15% of the total residual impulse, or 4.8 fps. Since velo-

city uncertainties of this size are not tolerable in a high quality guidance

system, liquid engines are frequently equipped with vernier engines.

Vernier engines are small liquid or solid engines which are capable of accelerating

the vehicle at 0.1 - 0.2 g's. When a vehicle is equipped with verniers, the main

engine is shut down with V positive by an amount which is larger than anygx

4A x which is expected from a residual impulse. The vernier ij then ignited (if

a liquid it has probably been on with the main engine) and its thrust is terminated

when Vgx is positive by an amounL which compensates for Its anticipated residual

impulse. While the shut down procedure is the same for the small engine, the

difference lies in the fact that the velocity uncertainty is reduced by the ratio

of the thrusts of the main and vernier enginec. For the 0.1 g vernier, this

means that the velocity, for the number chosen, would be reduced by a factor of

100 to O.O48 fps, which would uuually be called negligible. For medium accuracy

systems, the added complexity of the vernier system often preclude3 its use.
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Cutoff Extrapolation - Even when a vernier mystem in u;,-I, there still

remains the problem of generating the thrast termination ý-ýn-nal with sufficiently

small time quantization. For many inertial guidance computers, position, velocity,

end velocity-to-be-gained are computed otce --very one half necond. In the case of

a 0.1 g vernier, the one quarter second uncerta-inty could cause a 0.8 fps velocity

error. Shuting down the main engine with a time uncertainty this large wuuli

also require the use of a vernier with longer mean. burning time. In order to

reduce these effects, an extrapolation procedure is used. Consider for example

a system where V is generated every one half second and where the extrapola-gA
tion is accomplished every one sixteenth of a second. Then

Vgy(Iq+n) 1 6N÷

where VgXN is the value of V at a half second point and Vgx(N)n, is the

value n/16 seconds later. Sufficient accuracy is usually obtained by using the

standard value of V so the main engine is cutoff when
gx

V xf + nK Kmeco (118)

and the vernier engine is cutoff when

V + nK _< K -°-- (119)
gxN -2 - veco

where K1  and K 2 are standard values of V gxo/16 before rain engine and

vernier cutoff and Kmeco and Kveco are computed to compensate for nominal

values of residual impulse plus an uncertainty in the case of the main engine.

In practice, the nominal vernier pcriod should be long enough to damp out any

steering transients. Usually the rea' ired lenjth is in the 20-30 second region.
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Syetems With Solid Engines - Solid propellant engines differ from liquid

propellant engines in that combustion occurs in the full lcngth of the engine

case, rather- •-in the thrust chambr 3nly. Thrust is terminated in a solid

engine by blowing holes in the forward end of the case. This has the effect

of reducing the thrust to -roe in a very short period of time. Even with large

engines, the residual impulse uncertainty can be reduced to the point where

verniers are not required.

Cutting off a high acceleration engine does however impose some rather stringent

requirements on the cutoff time granularity. For Instance for a 10 g engine,

cutting off to + 1/32 second would result in a velocity uncertainty of 10 fps.

If the time granularity is decreased to a half millisecond, then the velocity

uncertainty is decreased to 0.16 fps. Therefore some form of extrapolation is

required, since the basic guidance computations are done at a m'uch slower rate.

Here it turns out that good results are obtained when the engine is cutoff when

t
V = v + f dx < K eco (120)

Jt
0

where V is the value of V at time t 0.uhere the extrapolation mode isgxo gx o
begun and where Kmeco is a constant which compensates for a nominal rcidual

impulse. The extrapolation assures that VFI and the integrel, of gravitational

acceleration change a negligible amount over the extrapolaticn interval which is

usually true for intervals of the order of a half second.

Multiple Thrust Periods - As has been pointed out previously, more complicated

missions such as placing a satellite into a high altitude orbit often have two

or more thrust periods. Durring the various thrust period , tho ncminal thrust

dlrect.on in general has different orientations with respect to V , since

the computational coordinate system usually remains fixed. In this caze it is

necessary to resolve either V or the steering cotmands themnelves fromS~g
inertial to vehicle coordinates. This can be done either in the computer or

by means of an analog resolver chain. Cutoff is generated on the basis of some

major component of V7g


